ความสัมพันธ์เชิงปริภูมิ[แก้]
- สาขาเหล่านี้ มักใช้วิธีการเชิงรูปภาพมากกว่าในสาขาอื่นๆ
เรขาคณิต | ตรีโกณมิติ | เรขาคณิตเชิงอนุพันธ์ | ทอพอโลยี | เรขาคณิตสาทิสรูป |
- ทอพอลอยี - เรขาคณิต - ตรีโกณมิติ - เรขาคณิตเชิงพีชคณิต - เรขาคณิตเชิงอนุพันธ์ - ทอพอโลยีเชิงอนุพันธ์ - ทอพอโลยีเชิงพีชคณิต -พีชคณิตเชิงเส้น - เรขาคณิตสาทิสรูป
ความเปลี่ยนแปลง[แก้]
- หัวข้อเหล่านี้ เกี่ยวข้องกับการวัดความเปลี่ยนแปลงของฟังก์ชันทางคณิตศาสตร์ และความเปลี่ยนแปลงระหว่างจำนวน
แคลคูลัส | แคลคูลัสเวกเตอร์ | สมการเชิงอนุพันธ์ | ระบบพลวัติ | ทฤษฎีความอลวน |
- เลขคณิต - แคลคูลัส - แคลคูลัสเวกเตอร์ - คณิตวิเคราะห์ - ทฤษฎีการวัด - การวิเคราะห์เชิงฟังก์ชัน - การวิเคราะห์เชิงจินตภาพ - การวิเคราะห์ฟูร์ริเยร์ - สมการเชิงอนุพันธ์ - ระบบพลวัติ - ทฤษฎีความอลวน - รายการฟังก์ชัน
พื้นฐานและวิธีการ[แก้]
- หัวข้อเหล่านี้คือแนวทางการเข้าถึงคณิตศาสตร์และมีอิทธิพลต่อวิธีที่นักคณิตศาสตร์ใช้ในการศึกษา
ตรรกศาสตร์ | ทฤษฎีเซต | ทฤษฎีประเภท |
- ปรัชญาคณิตศาสตร์ - พื้นฐานคณิตศาสตร์ (Foundations of mathematics) - ทฤษฎีเซต - ตรรกศาสตร์สัญลักษณ์ - ทฤษฎีโมเดล - ทฤษฎีประเภท - ตรรกศาสตร์
วิยุตคณิต[แก้]
- วิยุตคณิต คือแขนงของคณิตศาสตร์ที่สนใจวัตถุที่มีค่าเฉพาะเจาะจงที่แตกต่างกัน
คณิตศาสตร์เชิงการจัด | ทฤษฎีการคำนวณ | วิทยาการเข้ารหัสลับ | ทฤษฎีกราฟ |
คณิตศาสตร์ประยุกต์[แก้]
- สาขาในคณิตศาสตร์ประยุกต์ ใช้ความรู้ทางคณิตศาสตร์เพื่อแก้ปัญหาในโลกของความเป็นจริง
- คณิตศาสตร์ฟิสิกส์ - กลศาสตร์ - กลศาสตร์ของไหล - การวิเคราะห์เชิงตัวเลข - การหาค่าเหมาะที่สุด (Optimization) - ความน่าจะเป็น -สถิติศาสตร์ - คณิตศาสตร์การเงิน - ทฤษฎีเกม - คณิตชีววิทยา (Mathematical biology) - วิทยาการเข้ารหัสลับ - ทฤษฎีข้อมูล - ทฤษฎีระบบควบคุม
ทฤษฎีบทที่สำคัญ[แก้]
- ทฤษฎีบทเหล่านี้ เป็นที่สนใจของทั้งนักคณิตศาสตร์และบุคคลทั่วไป
- ทฤษฎีบทพีทาโกรัส - ทฤษฎีบทสุดท้ายของแฟร์มา - ทฤษฎีบทความไม่สมบูรณ์ของเกอเดล - ทฤษฎีบทมูลฐานของเลขคณิต - ทฤษฎีบทมูลฐานของพีชคณิต - ทฤษฎีบทมูลฐานของแคลคูลัส - วิธีการแนวทแยงของคันทอร์ - ทฤษฎีบทสี่สี - บทตั้งของซอน (Zorn's lemma) - เอกลักษณ์ของออยเลอร์ - ข้อปัญหาของเชิร์ช-ทัวริง - ทฤษฎีบทการจำแนกของพื้นผิว (classification theorems of surfaces) - ทฤษฎีบทเกาส์-โบนเนต์(Gauss-Bonnet theorem)
ข้อความคาดการณ์ที่สำคัญ[แก้]
- ปัญหาคณิตศาสตร์ที่ยังไม่มีใครแก้ได้
- ข้อความคาดการณ์ของโกลด์บาช - ข้อความคาดการณ์จำนวนเฉพาะคู่แฝด - สมมติฐานของรีมันน์ - สมมติฐานความต่อเนื่อง - ข้อความคาดการณ์ของปวงกาเร - P=NP? - ปัญหาของฮิลแบร์ท
ประวัติและโลกของนักคณิตศาสตร์[แก้]
- ประวัติของคณิตศาสตร์ - เส้นเวลาของคณิตศาสตร์ - นักคณิตศาสตร์ - เหรียญฟิลด์ส (Fields Medal) - รางวัลอาเบล (Abel Prize) - ปัญหารางวัลสหัสวรรษ (รางวัลเคลย์แมท) (Millennium Prize Problems (Clay Math Prize)) - สหภาพคณิตศาสตร์นานาชาติ (International Mathematical Union) - การแข่งขันคณิตศาสตร์ - การคิดเชิงข้าง (Lateral thinking) - ประเด็นเกี่ยวกับความสามารถทางคณิตศาสตร์และเพศ (Mathematical abilities and gender issues)
ไม่มีความคิดเห็น:
แสดงความคิดเห็น