วันพุธที่ 20 พฤศจิกายน พ.ศ. 2556

ความสัมพันธ์เชิงปริภูมิ[แก้]

สาขาเหล่านี้ มักใช้วิธีการเชิงรูปภาพมากกว่าในสาขาอื่นๆ
Illustration to Euclid's proof of the Pythagorean theorem.svgSine cosine plot.svgHyperbolic triangle.svgTorus.pngKoch curve.svg
เรขาคณิตตรีโกณมิติเรขาคณิตเชิงอนุพันธ์ทอพอโลยีเรขาคณิตสาทิสรูป
ทอพอลอยี - เรขาคณิต - ตรีโกณมิติ - เรขาคณิตเชิงพีชคณิต - เรขาคณิตเชิงอนุพันธ์ - ทอพอโลยีเชิงอนุพันธ์ - ทอพอโลยีเชิงพีชคณิต -พีชคณิตเชิงเส้น - เรขาคณิตสาทิสรูป

ความเปลี่ยนแปลง[แก้]

หัวข้อเหล่านี้ เกี่ยวข้องกับการวัดความเปลี่ยนแปลงของฟังก์ชันทางคณิตศาสตร์ และความเปลี่ยนแปลงระหว่างจำนวน
Integral as region under curve.svgVector field.svgAirflow-Obstructed-Duct.pngLimitcycle.jpgLorenz attractor.svg
แคลคูลัสแคลคูลัสเวกเตอร์สมการเชิงอนุพันธ์ระบบพลวัติทฤษฎีความอลวน
เลขคณิต - แคลคูลัส - แคลคูลัสเวกเตอร์ - คณิตวิเคราะห์ - ทฤษฎีการวัด - การวิเคราะห์เชิงฟังก์ชัน - การวิเคราะห์เชิงจินตภาพ - การวิเคราะห์ฟูร์ริเยร์ - สมการเชิงอนุพันธ์ - ระบบพลวัติ - ทฤษฎีความอลวน - รายการฟังก์ชัน

พื้นฐานและวิธีการ[แก้]

หัวข้อเหล่านี้คือแนวทางการเข้าถึงคณิตศาสตร์และมีอิทธิพลต่อวิธีที่นักคณิตศาสตร์ใช้ในการศึกษา
 p \Rightarrow q \, Venn A intersect B.svgCommutative diagram for morphism.svg
ตรรกศาสตร์ทฤษฎีเซตทฤษฎีประเภท
ปรัชญาคณิตศาสตร์ - พื้นฐานคณิตศาสตร์ (Foundations of mathematics) - ทฤษฎีเซต - ตรรกศาสตร์สัญลักษณ์ - ทฤษฎีโมเดล - ทฤษฎีประเภท - ตรรกศาสตร์

วิยุตคณิต[แก้]

วิยุตคณิต คือแขนงของคณิตศาสตร์ที่สนใจวัตถุที่มีค่าเฉพาะเจาะจงที่แตกต่างกัน
\begin{matrix} (1, 2, 3) & (1, 3, 2) \\ (2, 1, 3) & (2, 3, 1) \\ (3, 1, 2) & (3, 2, 1) \end{matrix}DFAexample.svgCaesar3.svg6n-graf.svg
คณิตศาสตร์เชิงการจัดทฤษฎีการคำนวณวิทยาการเข้ารหัสลับทฤษฎีกราฟ
คณิตศาสตร์เชิงการจัด - ทฤษฎีการคำนวณ - วิทยาการเข้ารหัสลับ - ทฤษฎีกราฟ

คณิตศาสตร์ประยุกต์[แก้]

สาขาในคณิตศาสตร์ประยุกต์ ใช้ความรู้ทางคณิตศาสตร์เพื่อแก้ปัญหาในโลกของความเป็นจริง
คณิตศาสตร์ฟิสิกส์ - กลศาสตร์ - กลศาสตร์ของไหล - การวิเคราะห์เชิงตัวเลข - การหาค่าเหมาะที่สุด (Optimization) - ความน่าจะเป็น -สถิติศาสตร์ - คณิตศาสตร์การเงิน - ทฤษฎีเกม - คณิตชีววิทยา (Mathematical biology) - วิทยาการเข้ารหัสลับ - ทฤษฎีข้อมูล - ทฤษฎีระบบควบคุม

ทฤษฎีบทที่สำคัญ[แก้]

ทฤษฎีบทเหล่านี้ เป็นที่สนใจของทั้งนักคณิตศาสตร์และบุคคลทั่วไป
ทฤษฎีบทพีทาโกรัส - ทฤษฎีบทสุดท้ายของแฟร์มา - ทฤษฎีบทความไม่สมบูรณ์ของเกอเดล - ทฤษฎีบทมูลฐานของเลขคณิต - ทฤษฎีบทมูลฐานของพีชคณิต - ทฤษฎีบทมูลฐานของแคลคูลัส - วิธีการแนวทแยงของคันทอร์ - ทฤษฎีบทสี่สี - บทตั้งของซอน (Zorn's lemma) - เอกลักษณ์ของออยเลอร์ - ข้อปัญหาของเชิร์ช-ทัวริง - ทฤษฎีบทการจำแนกของพื้นผิว (classification theorems of surfaces) - ทฤษฎีบทเกาส์-โบนเนต์(Gauss-Bonnet theorem)

ข้อความคาดการณ์ที่สำคัญ[แก้]

ปัญหาคณิตศาสตร์ที่ยังไม่มีใครแก้ได้
ข้อความคาดการณ์ของโกลด์บาช - ข้อความคาดการณ์จำนวนเฉพาะคู่แฝด - สมมติฐานของรีมันน์ - สมมติฐานความต่อเนื่อง - ข้อความคาดการณ์ของปวงกาเร - P=NP? - ปัญหาของฮิลแบร์ท

ประวัติและโลกของนักคณิตศาสตร์[แก้]

ประวัติของคณิตศาสตร์ - เส้นเวลาของคณิตศาสตร์ - นักคณิตศาสตร์ - เหรียญฟิลด์ส (Fields Medal) - รางวัลอาเบล (Abel Prize) - ปัญหารางวัลสหัสวรรษ (รางวัลเคลย์แมท) (Millennium Prize Problems (Clay Math Prize)) - สหภาพคณิตศาสตร์นานาชาติ (International Mathematical Union) - การแข่งขันคณิตศาสตร์ - การคิดเชิงข้าง (Lateral thinking) - ประเด็นเกี่ยวกับความสามารถทางคณิตศาสตร์และเพศ (Mathematical abilities and gender issues)

เครื่องมือทางคณิตศาสตร์[แก้]

โครงสร้าง

        สาขาเหล่านี้ ศึกษาขนาดและความสมมาตรของจำนวนและวัตถุทางคณิตศาสตร์ต่างๆ

ปริมาณ

โดยทั่วไป หัวข้อและแนวคิดเหล่านี้เกี่ยวข้องกับการวัดขนาดของตัวเลข หรือเซต หรือว่าวิธีการวัดค่าดังกล่าว

หัวข้อทางคณิตศาสตร์

          รายการด้านล่างนี้ แสดงลักษณะหนึ่งของการแบ่งย่อยของหัวข้อทางคณิตศาสตร์เท่านั้น สำหรับการแบ่งหัวข้อตาม 2000 Mathematics Subject Classification (MSC2000) ดู: สาขาของคณิตศาสตร์

ประวัติคณิตศาสตร์

          วิวัฒนาการของคณิตศาสตร์อาจถูกมองว่าเป็นชุดของการเพิ่มขึ้นของภาวะนามธรรมหรืออาจเป็นการขยายตัวของวิชาที่เกี่ยวกับสสาร ภาวะนามธรรมที่เกิดขึ้นเป็นครั้งแรกนั้น, มีส่วนเกี่ยวข้องกับสัตว์หลาย ๆ ชนิด, [1] เป็นความน่าจะเป็นที่เกี่ยวข้องกับจำนวน